
Overview:

In many applications the 

combination of optical/structural 

and analytical imaging of the same 

target at the same time is desirable. 

In an electron microscope a 

focused electron beam is used for 

optical imaging. For nano-scale 

surface processing and advanced 

structural imaging a primary 

focused ion beam (FIB) is used. The 

FIB produces a small amount of 

secondary ions, which can be used 

for spatially resolved mass 

spectrometry.

Challenges:

• Limited space 

• Low secondary ion beam 

currents (typical 1 … 5 pA)

• Broad kinetic energy distribution 

of the secondary ions

• Difficult vacuum conditions

Approach:

• Helium cooling section to 

minimize energy distribution 

width

• Extraction lens configuration [1]

• Axial segmented linear 

quadrupole trap made in planar 

technology [2] for ion transfer

• Pressure stage incorporating a 

quadrupole ion wave guide for 

ion transfer between different 

pressure regions

• 3D-Ion trap used in Fourier 

Transform mode as mass 

analyzer
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IonGuide

IonGuide

Compact and fully integrated SIMS-device

Methods for Stage-by-Stage Characterization

• System dimensioning of the complete transfer chain using SimIon

• Hard sphere model to simulate collisions and cooling efficiency 

I. Secondary ions are continuously generated by the FIB

II. Secondary ions are accelerated into the SIMS orifice [1]

III. Ions are cooled and bunched in the IonGuide

IV. Ions are accumulated and sequentially transferred/pulsed into the 

mass analyzer (3D-trap)

V. Ions are analyzed by measuring their influence charge on the cap 

electrodes [3]

WaveGuide

Ionization:

electron beam ionization (tungsten 

filament)  of Argon/Krypton outside 

the SIMS device. IonGuide used for 

ion transfer to WaveGuide

Ion detection:

Cup electrode of 3D-trap used as 

Faraday-Cup

3D-Trap

Ionization:

266nm UV Laser for in-situ ion 

generation of vapor phase 

converted aromatic hydrocarbons

Ion detection:

Measuring the influence charge of 

trapped ions

IonGuide

Ionization:

electron beam ionization (tungsten 

filament)  of Argon/Krypton outside 

the SIMS device

Ion detection:

WaveGuide electrode used as  

Faraday-Cup

WaveGuide

WaveGuide

Mass Analyzer

Conclusions

Transient signal and spectrum of in-

situ generated benzene-ions

• WaveGuide: Enables transfer of cooled 

and bunched ions between different 

pressure regions

• IonGuide: Kinetic energy equilibrium 

depends on DC ramp of the IonGuide

• IonGuide: High helium pressure minimizes 

kinetic energy distribution of ions

• 3D trap: Compact and highly efficient 

wideband mass analyzer

• SIMS: Complete chain tested under 

typical lab conditions → proof of concept 

adduced

Future work:

• Improve and extend low mass range

• Improve pressure stages to enable high 

resolution measurements (longer signal 

transients) 

• Improve dynamic mass range

mass spectrum of FIB sputtered ions 

(complete transfer chain)

HV amplifier

c
h

a
rg

e
a

m
p

lif
ie

r

valve

Sequence Control System

UV-Laser

sample gas

bend-voltage:
+12 V

WaveGuide control unit

System potentials

e
x
tr

a
c

t

c
o

o
l

tr
a

n
sf

e
r

a
n

a
ly

ze

FIB

target

microscope

chamber
P < 5×10-6 mbar

analysis chamber
P < 5×10-6 mbar

cooling stage (Helium)
P = 1×10-2 … 5×10-3 mbar

pump
pump

pump

University of Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

athmosphere

• Ions are shifted and pulsed into the 3D-trap

• High pulse amplitudes → strong signals

• Ions are transferred with different shift frequencies

• Shift frequency does not affect transfer efficiency

• DC ramp affects kinetic 

energy equilibrium

• High DC ramps → high 

kinetic energy

• Low helium pressure causes 

broad kinetic energy 

distributions

• Measurements show higher 

kinetic energy than 

numerical simulations

• Difficult to determine field 

distortion- and RF-effects
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