Development of an ion funnel based on printed circuit technology for ion transfer and manipulation purposes

Introduction

State of knowledge:

Traditional ion funnels are used for efficient ion transfer between two regions of different gas pressure, and for ion focusing [2]. In these funnels the ring radius R is typically much larger than the axial distance W between the electrodes.

Challenge: a novel funnel

- operating with non-vanishing axial radiofrequency fields,
- 2. working at elevated pressure $(\sim 1...10 \text{ mbar}),$
- 3. optionally allowing for timemodulated dc signals applied to the ring electrodes,
- 4. being able to modify the primary ion energy distribution, activate the ion population (analyte ion and/or LC solvent cluster) in a controlled way

Methods

ionization source	custom cAPCI [1] (capillary atmospheric pressure chemical ionization source) – corona discharge – background gas N ₂ – water added through needle with the aid of a syringe pump
ion transfer	glass capillary – 0.6 mm int. diameter – 210 mm length
	 ion funnel 30 electrodes 5 mm int. radius rf (875 kHz, 100Vpp) dc gradient fields (typ. 10V to skimmer) optional moving potential wells
MS	Hiden HPR60 (molecular beam mass spectrometer) equipped with – 2 skimmers,

2nd pumping stage

our dream: ion activation

<u>Albrecht Brockhaus; Sonja Klee; Walter Wißdorf; Klaus J. Brockmann;</u> Thorsten Benter; Albrecht Glasmachers

Ion funnel concept, design and experimental set-up

novel ion funnel:

- 30 Cu electrodes of
- R = 5mm radius
- W = 5mm structure width
- rf fields in core region

FR4 plate

ion funnel

$[H+(H_2O)n]^+$ water cluster fragmentation induced by radiofrequency heating within the ion funnel

increasing rf amplitude

experimental set-up

ion source, funnel, and electronics

University of Wuppertal, Germany Institute for Pure and Applied Mass Spectrometry

Simulation results

finite element field simulation

ion trajectories from SIMION[®] simulation study (including elastic collisions)

Conclusions

- Ion funnel efficiently transfers analyte ions as well as reagent ions over large distances e.g., >200 mm.
- With increasing rf amplitude the chemical equilibrium of the water cluster population is shifted to smaller clusters.
- Proton bound dimer ions as well as hydrated analyte ions are efficiently transferred into the corresponding monomers in a controlled manner.
- Efficient production of H_3O^+ leads to enhanced protonation of nonpolar analytes e.g., toluene.

References

[1] S. Klee et. al., poster MP15 #274 [2] S. A. Shaffer et. al., Rapid Communications in Mass Spectrometry **11**, 1813 (1997)