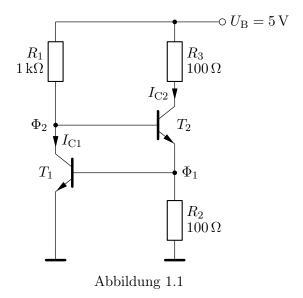
#### Klausur in

# "Mess- und Schaltungstechnik"

im Sommersemester 2016 am 01.08.2016

#### Beachten Sie folgende Hinweise:

- Füllen Sie als Erstes das Deckblatt aus.
- Prüfen Sie die Vollständigkeit der Klausur. (9 Aufgabenblätter)
- Es sind keine Hilfsmittel (z.B. Formelsammlung oder Taschenrechner) erlaubt. Smartwatches und Telefone sind im Rucksack oder in der Tasche zu verstauen.
- Verwenden Sie keinen Bleistift oder Rotstift.
- Benutzen Sie für eine neue Aufgabe ein neues Blatt.
- In den Aufgaben können 116 Punkte erreicht werden. 100 Punkte entsprechen der Note 1,0.


| Name, Vorname:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Matrikelnummer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| in a second seco |  |
| Unterschrift:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

| Aufgabe    | Punkte |
|------------|--------|
| 1          |        |
| 2          |        |
| 3          |        |
| 4          |        |
| 5          |        |
| 6          |        |
| 7          |        |
| Zusatzpkt. |        |
| Summe      |        |

| Note |  |
|------|--|

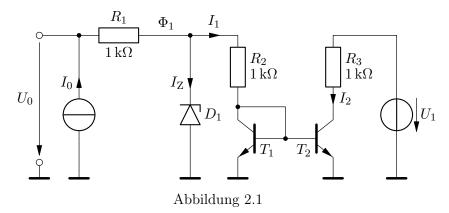
## Aufgabe 1: (16 Punkte)

Gegeben sei die Transistorschaltung aus Abbildung 1.1. Die Transistoren  $T_1$  und  $T_2$  seien ideal mit  $U_{\text{BE},1} = U_{\text{BE},2} = 0.7 \,\text{V}, \ B = \beta \to \infty$  und  $U_A \to \infty$ .



- a) Bestimmen Sie die Potentiale  $\Phi_1$  und  $\Phi_2$  allgemein und numerisch.
- b) Bestimmen Sie die Ströme  $I_{\rm C2}$  und  $I_{\rm C1}$  allgemein und numerisch.

Hinweis: Verwenden Sie für Aufgabenpunkte c) bis d) einen Ihnen bekannten Zusammenhang zwischen  $U_{\rm BE}$  und der Temperatur.


- c) Bestimmen Sie die Abhängigkeit  $\frac{dI_{C2}}{dT}$  allgemein und numerisch.
- d) Bestimmen Sie die Abhängigkeit  $\frac{dI_{\rm C1}}{dT}$ allgemein und numerisch.

Der Widerstand  $R_3$  habe nun einen Wert  $R_3 = 200 \,\Omega$ .

- e) Bestimmen Sie für diesen Fall den Kollektorstrom  $I_{C2}$ .
- f) Bestimmen Sie die Abhängigkeit  $\frac{dI_{\rm C2}}{dU_{\rm B}}$  allgemein und numerisch. Hinweis: Es gelte weiterhin der Zusammenhang  $U_{\rm BE,1}=U_{\rm BE,2}=0.7\,{\rm V}\neq f(I_{\rm C})$ . Welche Funktion hat diese Schaltung?

## Aufgabe 2: (19 Punkte)

Gegeben sei die Schaltung aus Abbildung 2.1. Die Transistoren seien ideal und vom gleichen Typ mit  $B = \beta \to \infty$ ,  $U_A \to \infty$  und  $U_{BE} = 0.6 \,\mathrm{V}$ . Die Diode  $D_1$  ist eine ideale Z-Diode mit  $U_Z = 4.6 \,\mathrm{V}$ . Weiterhin gelte  $U_1 = 10 \,\mathrm{V}$ .



- a) Bestimmen Sie den Strom  $I_0$ , für den  $I_Z = 2 \,\mathrm{mA}$  gilt.
- b) Bestimmen Sie für diesen Fall die Spannung  $U_0$ .
- c) Bestimmen Sie den Strom  $I_0$  für den Fall, dass die Z-Diode gerade leitend wird, d.h.  $U_{\rm Z}=4.6\,{\rm V}$  und  $I_{\rm Z}\to0.$

Hinweis: Die Aufgabenpunkte f) und g) können ohne das Ergebnis aus d) und e) gelöst werden.

- d) Bestimmen Sie das Potential  $\Phi_1 = f(I_0)$  für  $0 \le I_0 \le 6$  mA und zeichnen Sie den Verlauf in das Diagramm aus Abbildung 2.2 ein. Hinweis: Beachten Sie die Fallunterscheidungen
- e) Bestimmen Sie den Strom  $I_1 = f(I_0)$  für  $0 \le I_0 \le 6$  mA und zeichnen Sie den Verlauf in das Diagramm aus Abbildung 2.3 ein. Hinweis: Beachten Sie die Fallunterscheidungen
- f) Bestimmen Sie die Abhängigkeit  $\frac{dI_2}{dU_1}.$
- g) Für die Transistoren gelte nun  $B=\beta=100.$  Geben Sie für diesen Fall  $I_2=f(I_1)$  an.

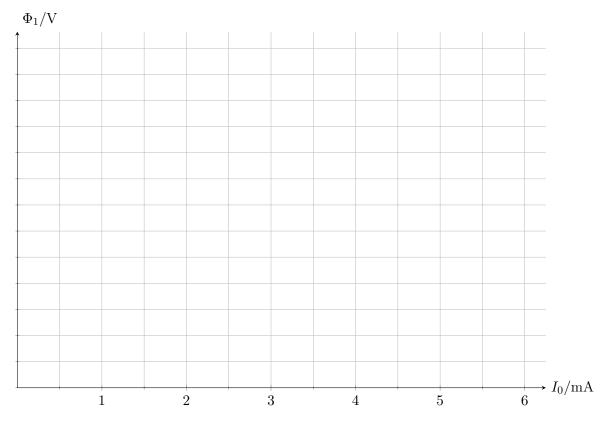



Abbildung 2.2: Diagramm Aufgabe d)

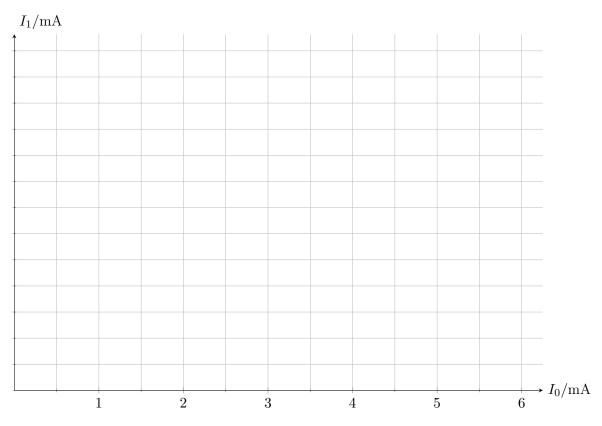
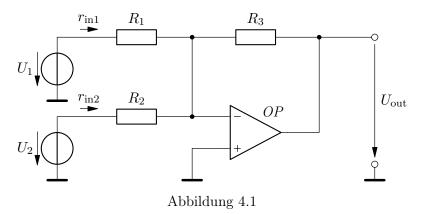




Abbildung 2.3: Diagramm Aufgabe e)

## Aufgabe 3: (17 Punkte)


Gegeben sei die Schaltung aus Abbildung 3.1 mit idealen Transistoren, für die  $B=\beta \to \infty$  sowie  $U_{\rm A} \to \infty$ ,  $|U_{\rm BE}|=0.6\,{\rm V}$  und  $U_{\rm T}=25\,{\rm mV}$  gelte. Weiterhin ist die Betriebsspannung mit  $U_{\rm B}=10\,{\rm V}$  gegeben und für die Kondensatoren gelte:  $C_1=C_2\to\infty$ .



- a) In welchen Grundschaltungsarten werden die Transistoren  $T_1$  und  $T_2$  betrieben?
- b) Bestimmen Sie den Strom  $I_{\rm C1}$  und das Potential  $\Phi_1$  im Arbeitspunkt.
- c) Bestimmen Sie das Potential  $\Phi_2$  und Strom  $I_{\rm C2}$  im Arbeitspunkt.
- d) Zeichnen Sie das Kleinsignalersatzschaltbild der Schaltung.
- e) Welche Verstärkung  $v = \frac{u_{\text{out}}}{u_{\text{in}}}$  ergibt sich in dieser Schaltung?
- f) Wie groß sind der Eingangswiderstand  $r_{\rm in}$  und der Ausgangswiderstand  $r_{\rm out}$ ?

## Aufgabe 4: (15 Punkte)

Gegeben sei die Schaltung aus Abbildung 4.1 mit einem idealen Operationsverstärker.



- a) Bestimmen Sie  $U_{\text{out}}$  als Funktion von  $U_1$  für  $U_2 = 0 \text{ V}$ .
- b) Bestimmen Sie  $U_{\text{out}}$  als Funktion von  $U_2$  für  $U_1=0\,\text{V}.$
- c) Bestimmen Sie nun  $U_{\text{out}}$  als Funktion von  $U_1$  und  $U_2$ .
- d) Bestimmen Sie  $r_{\text{in}1}$  und  $r_{\text{in}2}$ .
- e) Um welche Operationsverstärkerschaltung handelt es sich?

Im folgenden gelte:  $U_1 > 0 \,\text{V}$  und  $U_2 > 0 \,\text{V}$ .

Die Schaltung wird nun um den idealen Transistor  $T_1$  mit  $B=\beta\to\infty$  und  $|U_{\rm BE}|=0.6\,{\rm V}$  und den Widerstand  $R_4$  erweitert, siehe Abbildung 4.2.

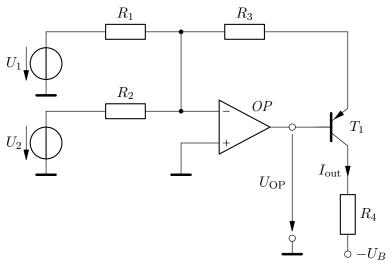



Abbildung 4.2

- f) Bestimmen Sie den Strom  $I_{\text{out}}$  als Funktion von  $U_1$  und  $U_2$ .
- g) Welchen Wert hat die Spannung  $U_{\rm OP}$ ?

## Aufgabe 5: (18 Punkte)

Gegeben sei die Schaltung aus Abbildung 5.1 mit zwei idealen Operationsverstärkern.

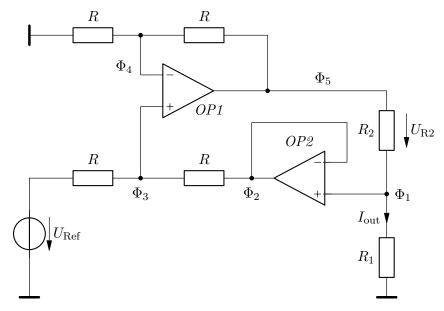
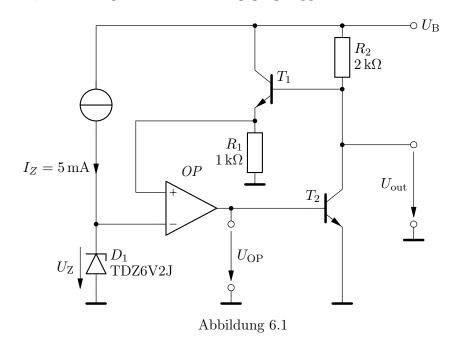



Abbildung 5.1


- a) Bestimmen Sie das Potential  $\Phi_1 = f(R_1, I_{\text{out}}).$
- b) Bestimmen Sie das Potential  $\Phi_2 = f(R_1, I_{\text{out}}).$
- c) Bestimmen Sie das Potential  $\Phi_3 = f(R, R_1, I_{\text{out}}, U_{\text{Ref}})$ .
- d) Bestimmen Sie das Potential  $\Phi_4 = f(R, R_1, I_{\text{out}}, U_{\text{Ref}}).$
- e) Bestimmen Sie das Potential  $\Phi_5 = f(R, R_1, I_{\text{out}}, U_{\text{Ref}}).$
- f) Wie groß ist die Spannung  $U_{\rm R2}$  über dem Widerstand  $R_2$ ?
- g) Bestimmen Sie den Strom  $I_{\text{out}} = f(R, R_1, R_2, U_{\text{Ref}}).$

Es gelte nun  $R=25\,\mathrm{k}\Omega,\,R_1=1\,\mathrm{k}\Omega,\,R_2=2.5\,\mathrm{k}\Omega$  und  $U_\mathrm{Ref}=2.5\,\mathrm{V}.$ 

- h) Wie groß ist der Strom  $I_{\text{out}}$ ?
- i) Welche Funktion hat die Schaltung?

# Aufgabe 6: (15 Punkte)

Gegeben sei die Schaltung aus Abbildung 6.1 mit einem idealen Operationsverstärker. Die beiden Transistoren  $T_1$  und  $T_2$  sind ideal und vom gleichen Typ mit  $B = \beta \to \infty$  und  $U_{\rm BE} = 0,6\,\rm V$ . Der Operationsverstärker wird mit  $\pm 10\,\rm V$  versorgt. Die Betriebsspannung  $U_B$  beträgt 10 V. In Abbildung 6.2 ist das Datenblatt der verwendeten Z-Diode zu finden. Gehen Sie davon aus, dass der Operationsverstärker gegengekoppelt ist.



- a) Bestimmen Sie das Potential am negativen Eingang des Operationsverstärkers  $\Phi_{\mathrm{OP,N}}$ .

  Hinweis: Entnehmen Sie den Wert für  $U_{\mathrm{Z}}$  aus dem Datenblatt. Nehmen Sie als typischen Wert den Mittelwert von Min und Max an.
- b) Bestimmen Sie das Potential am positiven Eingang des Operationsverstärkers  $\Phi_{\mathrm{OP,P}}$ .
- c) Bestimmen Sie die Ausgangsspannung  $U_{\text{out}}$ .
- d) Bestimmen Sie den Kollektorstrom  $I_{C2}$  von Transistor  $T_2$ .
- e) Bestimmen Sie die Spannung  $U_{\rm OP}$  am Ausgang des Operationsverstärkers.
- f) Bestimmen Sie  $\frac{dU_{\text{out}}}{dT}$ . Hinweis: Verwenden Sie für die Temperaturabhängigkeit von  $D_1$  einen geeigneten Wert aus Abbildung 6.2 sowie einen Ihnen bekannten Zusammenhang zwischen  $U_{\text{BE}}$  und der Temperatur.
- g) Erläutern Sie die Funktion der Schaltung.

| TDZxxxJ | Working voltage<br>V <sub>Z</sub> (V) |       | Differential resistance $r_{dif}(\Omega)$ |                       | Reverse current<br>I <sub>R</sub> (μA) |                    | Temperature<br>coefficient<br>S <sub>Z</sub> (mV/K) | Diode<br>capacitance<br>C <sub>d</sub> (pF)[1] | Non-repetitive<br>peak reverse<br>current<br>I <sub>ZSM</sub> (A)[2] |
|---------|---------------------------------------|-------|-------------------------------------------|-----------------------|----------------------------------------|--------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|
|         | $I_Z = 5 \text{ m/s}$                 |       | I <sub>Z</sub> = 1 mA                     | I <sub>Z</sub> = 5 mA |                                        |                    | I <sub>Z</sub> = 5 mA                               |                                                |                                                                      |
|         | Min                                   | Max   | Max                                       | Max                   | Max                                    | V <sub>R</sub> (V) | Тур                                                 | Max                                            | Max                                                                  |
| 2V4     | 2.35                                  | 2.45  | 400                                       | 100                   | 50                                     | 1.0                | -1.75                                               | 450                                            | 15                                                                   |
| 2V7     | 2.65                                  | 2.75  | 450                                       | 100                   | 20                                     | 1.0                | -1.75                                               | 440                                            | 15                                                                   |
| 3V0     | 2.94                                  | 3.06  | 500                                       | 95                    | 10                                     | 1.0                | -1.75                                               | 425                                            | 15                                                                   |
| 3V3     | 3.23                                  | 3.37  | 500                                       | 95                    | 5                                      | 1.0                | -1.75                                               | 410                                            | 15                                                                   |
| 3V6     | 3.53                                  | 3.67  | 500                                       | 90                    | 5                                      | 1.0                | -1.75                                               | 390                                            | 15                                                                   |
| 3V9     | 3.82                                  | 3.98  | 500                                       | 90                    | 3                                      | 1.0                | -1.75                                               | 370                                            | 15                                                                   |
| 4V3     | 4.21                                  | 4.39  | 600                                       | 90                    | 3                                      | 1.0                | -1.75                                               | 350                                            | 15                                                                   |
| 4V7     | 4.61                                  | 4.79  | 500                                       | 80                    | 3                                      | 2.0                | -1.65                                               | 325                                            | 15                                                                   |
| 5V1     | 5.00                                  | 5.20  | 480                                       | 60                    | 2                                      | 2.0                | -0.75                                               | 300                                            | 15                                                                   |
| 5V6     | 5.49                                  | 5.71  | 400                                       | 40                    | 10                                     | 2.5                | 0.25                                                | 275                                            | 15                                                                   |
| 6V2     | 6.08                                  | 6.32  | 150                                       | 10                    | 3                                      | 4.0                | 2.0                                                 | 250                                            | 12                                                                   |
| 6V8     | 6.66                                  | 6.94  | 80                                        | 15                    | 2                                      | 4.0                | 2.85                                                | 215                                            | 12                                                                   |
| 7V5     | 7.5                                   | 7.65  | 80                                        | 10                    | 1                                      | 5.0                | 3.9                                                 | 170                                            | 4.0                                                                  |
| 8V2     | 8.04                                  | 8.36  | 80                                        | 10                    | 0.70                                   | 5.0                | 4.7                                                 | 150                                            | 4.0                                                                  |
| 9V1     | 8.92                                  | 9.28  | 100                                       | 10                    | 0.50                                   | 6.0                | 5.4                                                 | 120                                            | 3.0                                                                  |
| 10      | 9.80                                  | 10.20 | 150                                       | 10                    | 0.20                                   | 7.0                | 6.25                                                | 110                                            | 3.0                                                                  |
| 11      | 10.80                                 | 11.20 | 150                                       | 10                    | 0.10                                   | 8.0                | 7.2                                                 | 108                                            | 2.5                                                                  |
| 12      | 11.80                                 | 12.20 | 150                                       | 10                    | 0.10                                   | 8.0                | 8                                                   | 105                                            | 2.5                                                                  |
| 13      | 12.70                                 | 13.30 | 170                                       | 10                    | 0.10                                   | 8.0                | 9                                                   | 103                                            | 2.5                                                                  |
| 15      | 14.70                                 | 15.30 | 200                                       | 15                    | 0.05                                   | 10.5               | 11.1                                                | 99                                             | 2.0                                                                  |
| 16      | 15.70                                 | 16.30 | 200                                       | 20                    | 0.05                                   | 11.2               | 12.2                                                | 97                                             | 1.5                                                                  |
| 18      | 17.6                                  | 18.4  | 225                                       | 20                    | 0.05                                   | 12.6               | 14.2                                                | 93                                             | 1.5                                                                  |
| 20      | 19.6                                  | 20.4  | 225                                       | 20                    | 0.05                                   | 14.0               | 16.2                                                | 88                                             | 1.5                                                                  |
| 22      | 21.6                                  | 22.4  | 250                                       | 25                    | 0.05                                   | 15.4               | 18.2                                                | 84                                             | 1.25                                                                 |
| 24      | 23.5                                  | 24.5  | 250                                       | 30                    | 0.05                                   | 16.8               | 20.2                                                | 80                                             | 1.25                                                                 |

Abbildung 6.2: Datenblatt der TDZxxxJ Z-Diode

## Aufgabe 7: (16 Punkte)

Gegeben sei die Schaltung aus Abbildung 7.1. Die Transistoren seien ideal und vom gleichen Typ mit  $B=\beta\to\infty,\ U_{\rm A}\to\infty$  und  $U_{\rm BE}=0.6\,{\rm V}.$  Die Diode  $D_1$  ist eine Laser-Diode zur Datenübertragung und kann als ideale Diode mit einer Flussspannung  $U_{\rm F}=2\,{\rm V}$  angenommen werden.  $U_1$  sei eine digitale Signalquelle mit Spannungspegeln von  $0\,{\rm V}$  und  $5\,{\rm V}.$  Weiterhin gelte  $U_{\rm B}=10\,{\rm V}$  und  $U_2=2.5\,{\rm V}.$ 

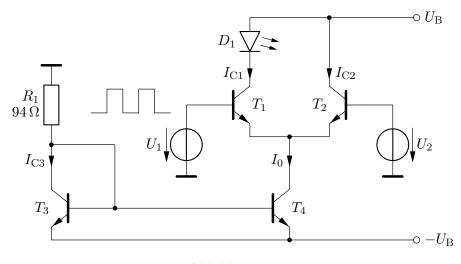



Abbildung 7.1

- a) Bestimmen Sie den Strom  $I_{C3} = f(U_B, R_1)$ .
- b) Bestimmen Sie den Strom  $I_0$ .
- c) Bestimmen Sie für  $U_1 = 0$  V die Ströme  $I_{C1}$  und  $I_{C2}$ .
- d) Bestimmen Sie für  $U_1 = 5 \text{ V}$  die Ströme  $I_{\text{C1}}$  und  $I_{\text{C2}}$ .
- e) Bestimmen Sie für den Fall aus Aufgabe c) die Verlustleistungen  $P_V$  von  $T_1$ ,  $T_2$  und  $T_4$ .
- f) Bestimmen Sie für den Fall aus Aufgabe d) die Verlustleistungen  $P_V$  von  $T_1$ ,  $T_2$  und  $T_4$ .
- g) Geben Sie eine geeignete Maßnahme an, um die Verlustleistung in  $T_2$  zu reduzieren.