Using a Fourier-transform quadrupole ion trap operating with advanced ion excitation methods for high performance mass analysis of organic hydrocarbons

Introduction **Overview**: In modern mass spectrometry quadrupoles are commonly used as transfer stages and mass filters. transient & Operating the quadrupole in the instability amplitude mode with a particle detector has some recorder constrains: Limited mass resolution \sim • Low scan speed Approach: FFT & mass A three-dimensional Paul trap is used as a conversion compact Fourier Transform mass analyzer. Detection of induction charges of stored gas inlet ions RF trapping field In-situ ion generation with pulsed gas ejection inlet ionization \rightarrow Very compact setup excitation Ion oscillation frequencies are mass FFT window dependent Improved using dynamic range ejection excitation and advanced techniques **Applications:** High resolution/sensitivity MS Key component of Paul trap FTMS \rightarrow <u>charge amplifier</u> Industrial environments (robust design) **Requirements:** Methods Conversion of induction charges into scaled voltages without adding significant noise Custom quadrupole ion Detector • Distortion-free transfer of ejection & trap (QIT), image current excitation waveforms to end-cap electrodes measurement (FTMS) Challenges: Electronics Custom designed: RF push-pull amplifier • Ion signal 140 dB smaller than crosstalk signal • Filter amplifier Keeping the detection electrodes at virtual Charge amplifier ground • Stimulus amplifier Solution: Standard 4 MS/s scope Transient Application of modern OP-amp with ultra low recorder noise input stage Ionization Electron ionization • Adding of an anti-phase compensation signal Multi-photo ionization to amplifier input V_{comp} with UV laser (FHG Trapping frequency 1 MHz, ion frequency Nd:YAG, 266 nm) range 0-250 kHz Analytes VOCs, toluene in N_2 , toluene in H₂

<u>Michael Schmidt¹</u>; Albrecht Brockhaus¹; Klaus J. Brockmann¹; Thorsten Benter¹; Alexander Laue²; Michel Aliman² ¹University of Wuppertal, Wuppertal, Germany; ²Carl Zeiss AG, Oberkochen, Germany

Experimental Setup

Sensitivity

- RF voltage ca. 700 V_{pp}
- Trapping field is deactivated temporarily, before ionization \rightarrow no accumulation of ions
 - SNR at 10 ppb still at 50 dB

Dynamic Range

Problem:

 N_2 and O_2 ions fill the ion trap a), all other components in lower concentrations are suppressed

Solution:

• Increase RF trapping voltage, lighter ions become unstable

dynamic range of 10⁸ or more is achieved

University of Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

VOC in dry air 30 40 50 50 20 time [ms 106 100 110 120 90 80 70 mass [Da] • Eject dominant ion species b)

Conclusions

A custom-made electrical quadrupole ion trap in Fourier Transform mode is Non-destructive demonstrated. ion detection based on a sensitive ultra-low noise induction charge amplifier enables advanced mass analysis:

- The system allows for i) long-term ion accumulation, ii) stable ion storage, and iii) multiple ion excitation and observation cycles
- Signal-to-Noise ratios exceeding 60 dB are readily achieved
- \rightarrow Sensitivities in the low ppb range are established as shown here for toluene samples
- If the analyte is present in a complex gas mixture then unwanted ion species may be ejected from the trap by selected destabilization of their oscillations
 - \rightarrow A high dynamic range exceeding 10⁸ is obtained
- High single-shot resolution in measurements
 - \rightarrow At low pressures of about 10⁻⁸ mbar the measured ion oscillation times reach several seconds, resolution exceeding 100000 is feasible

Future aspects:

 Improved mass accuracy / radiofrequency amplitude measurement technique

References

- [1] Laue, A.; Glasmachers, A.: New Design of a Compact Fourier-Transform Quadrupole Ion Trap for High Sensitivity Applications, 57th ASMS Conference, Philadelphia (USA), 2009
- [2] Aliman, M.; Glasmachers, A.: A Novel Ion Resonance Cell Design with High Signal-to-Noise Ratio and Low Distortion for Fourier Transform Mass Spectrometry J.Am.Soc.Mass Spectrom, 10, 100-1007, 1999
- [3] R.E. March and R.J Hughes: Quadrupole Storage Mass Spectrometry, Wiley, New York (1989)
- [4] P.H. Dawson: Quadrupole Mass Spectrometry and its Applications, Elsevier, Amsterdam (1976)

Acknowledgement

Financial support is gratefully acknowledged: Carl Zeiss AG, Oberkochen, Germany