
Ion trap Fourier-transform mass spectrometer with induced current detection and arbitrary storage waveforms

<u>Michael Schmidt¹</u>; Albrecht Brockhaus¹; Stefan Butzmann¹; Alexander Laue²; Michel Aliman²

Introduction **Overview**: Quadrupole ion traps can achieve a great performance when using nondestructive ion detection by induced current measurement. In typical applications the ion trap is operated with fixed frequency sinewaves to generate the required trapping field. In the past years the so-called (DIT), which digital ion CRing rectangular operates V_{RF}[()) waveform (DIT), has evolved. It was shown that resolution and scan can be increased, speed in instability mode driven DITs. Using an arbitrary waveform rather than a sine wave offers several advantages to an ion trap FT-MS, too; Broadband compensation Simple waveform generation and shaping Narrowband compensation Increased mass range Selectivity adjustable by modifying the boundaries of ion stability S1 S3 _ _ _ _ _ _ _ _ C_{Ring} FPGA \rightarrow V_{RF} S2 S4 '_ _ _ _ _ _ . _ _ _ _ _ _ _ _ waveform • As it was demonstrated earlier with rectangular storage

- waveforms [4],[5] et. al., regions of stable ion motion may be altered by the shape of the storage waveform
- This can help isolating designated ion populations or suppressing background gas ($N_2 \dot{e} t \dot{c}$.), and thus increase dynamic range

- Small amplitudes are sufficient for an enhanc

	Institute	and Measurement Systems e for Pure and Applied ass Spectrometry
SENSORS A MEASUREM SYSTEMS	AND ON Unive	rsity of Wuppertal pertal, Germany
		Zeiss SMT GmbH cochen, Germany
	Conclusions	
surements:	Arbitrary waveform id FTMS:	on trap
onding	 A new broadband compensation has been developed to enable image current measurement with arbitrary trapping waveforms 	
07.4 kHz	 Low-noise characteristics of the charge amplifier could be maintained 	
92.8 kHz	 A custom-built waveform generator allows for creation of trapping fields of arbitrary frequency composition 	
ular rement)	 The frequency of the signal can be varied waveform is generative resonantly 	ed since the
ar (simulation) nulation)	 The mass range enhanced by re trapping frequency 	
	Outlook:	
	Improvements in was shaping/generation	aveform
	 Further analysis of to of arbitrary wavefore FT-MS 	
	 Coupling with differences 	ent ion
1000	References	
	 [1] Schmidt, M.; Brockhaus, A.; Brockm Laue, A.; Aliman, M.: Using a Fourie Quadrupole Ion Trap Operating with 	r-Transform
	Excitation Methods for High Perform Organic Hydrocarbons 62th ASMS Conference, Baltimore (L	nance Mass Analysis of
-size ion @ 1 MHz)	[2] Aliman, M.; Glasmachers, A.: A Nov Design with High Signal-to-Noise Ra for Fourier Transform Mass Spectron	el Ion Resonance Cell tio and Low Distortion
aveform	[3] Konenkov N.V; Sudakob M.: Matrix I	07,1999
ced mass	Calculation of Stablity Diagrams in C Spectrometry Am.Soc.Mass Spectro	Quadrupole Mass m 2002
with V _{RF} ²)	 [4] G. F. Brabeck, P. T.A. Reilly: Mapping driven ion traps and guides <i>Int. J.Ma</i> [5] Bandelow S.; Marx G.; Schweikhard diagram of the digital lop trap. <i>Int. J.</i> 	<i>L</i> .: The stability
	diagram of the digital Ion trap Int. J.	iviuss.spec 2013